The 1/0 Subsystem

4.1 1/0 Manager
4.2 The control program for the VirtToPhys
driver
4.2.1 Control program source code
4.2.2 Device object
4.2.3 Driver object
4.2.4 Symbolic link object
4.2.5 File object
4.2.6 Communicating with the device
4.2.7 1/0 Control Codes
4.2.8 Data exchange
4.2.9 Cleanup

%-j Source code: KmdKit\examples\simple\VirtToPhys

1/0 Manager

Unlike the user-mode, where we can call functions from some dll directly, simply using its address, in the kernel-mode such
scenario would be extremely dangerous in the view of the system stability. Therefore, the system provides the intermediary to
communicate with the kernel-mode. Such intermediary is an 1/0 Manager, which is one of the 1/0 subsystem's component.
The 1/0 Manager connects applications and system components with devices, and defines the infrastructure that supports
device drivers.

Very simplified scheme of how the 1/0 Manager interacts with the user-mode applications and the device drivers is given on
figure 4-1.

APPIicationsé [:] [] []

User Mode

Kernel Mode

IO System ! - I'O Manager R

orwers+ee () () () e

Devices e () b)

Devicesé o0 L J L J ' e

Figure 4-1. Simplified 1/0 subsystem architecture

From the above figure follows that absolutely all calls from the user-mode applications to the devices and, therefore, to the
device drivers are under control of the 1/0 Manager.

The user-mode code is forced to order the 1/0 operation to the device. Only and exactly the device. The driver must create
some device (or devices) to control. In our case this device is virtual one. Of course, creating the device doesn't mean some
new real device will be created. It just means some new object will be created in the memory (namely device object)
representing a physical or logical device on the system and describing its characteristics.

Creating the device the driver tells the 1/0 Manager: "Here is the device for me to control. If you will receive some 1/0 request
to this device, send it to me, and I'll take care about the rest." The driver only knows how to handle 1/0 requests to its device
(s). The only responsibility of the 1/0 Manager is to create and direct the 1/0 request to the appropriate device driver. And the
user-mode code does not (and should not) know at all, which driver services a particular device(s).

4.2 The control program for the VirtToPhys driver

4.2.1 Control program source code

Strictly speaking this code combines the service control program responsible for registration and starting the driver, and the
client program to communicate with the device.

; VirtToPhys.asm - Driver Control Program for VirtToPhys driver

. 386
.nmodel flat, stdcall
option casenmap: none

i ncl ude \'masnB2\i ncl ude\ wi ndows. i nc

ncl ude \ masnB2\i ncl ude\ ker nel 32.i nc
ncl ude \ masnB2\i ncl ude\ user 32.i nc
ncl ude \ masnB2\i ncl ude\ advapi 32.i nc

ncludelib \masnB2\1i b\ kernel 32.1ib
ncludelib \'masnB2\1lib\user32.1ib
ncludel i b \ masnB2\ i b\ advapi 32.1i b

nclude \'masnB2\i ncl ude\w ni octl.inc

ncl ude \ masnB2\ Macros\ Stri ngs. mac

ncl ude comon.inc

; CODE
code
; Bi gNunTToSt ri ng

Bi gNunfoSt ri ng proc uNum Ul NT, pszBuf:LPSTR

; This function accepts a nunber and converts it to a
; string, inserting commas where appropriate.

| ocal acNunf 32]: CHAR
| ocal nf: NUVBERFMI

invoke wsprintf, addr acNum $CTAO("%u"), uNum
and nf.NunDigits, O

and nf.Leadi ngZero, FALSE
mov nf. G ouping, 3

nov nf. | pDeci mal Sep, $CTAO(".")

mov nf. | pThousandSep, $CTAO(" ")

and nf. NegativeOrder, 0

i nvoke Get Nunber Format, LOCALE USER DEFAULT, 0, addr acNum addr nf, pszBuf, 32

ret
Bi gNunToSt ri ng endp

start proc uses esi edi

| ocal hSCManager : HANDLE

| ocal hService: HANDLE

| ocal acModul ePat h[MAX_PATH] : CHAR
| ocal _ss: SERVI CE_STATUS

| ocal hDevi ce: HANDLE

| ocal adw nBuf f er [NUM_DATA_ENTRY] : DWORD
| ocal adwout Buf f er [NUM_DATA ENTRY] : DWORD
| ocal dwByt esRet ur ned: DWORD

| ocal acBuffer[256+64]: CHAR
| ocal acThi s[64]: CHAR

| ocal acKernel [64]: CHAR

| ocal acUser[64]: CHAR

| ocal acAdvapi [64] : CHAR

| ocal acNunber[32]: CHAR

i nvoke OpenSCManager, NULL, NULL, SC MANAGER ALL_ACCESS
.if eax !'= NULL
mov hSCManager, eax

push eax
i nvoke Get Ful | Pat hName, $CTAO("VirtToPhys.sys"), \

si zeof acMbdul ePat h, addr acModul ePath, esp
pop eax

invoke CreateService, hSCvanager, $CTAO("VirtToPhys"), \
$CTAO("Virtual To Physical Address Converter"), \
SERVI CE_START + SERVI CE_STOP + DELETE, SERVI CE_KERNEL_DRI VER, \
SERVI CE_DEMAND_START, SERVI CE_ERROR_| GNORE, addr acModul ePat h, \
NULL, NULL, NULL, NULL, NULL

i f eax !'= NULL
mov hService, eax

; Driver's DriverEntry procedure will be called
invoke StartService, hService, 0, NULL
if eax 1= 0

; Driver will receive 1I/0O request packet (IRP) of type | RP_M_CREATE
invoke CreateFile, $CTAO("\\\\.\\slVirtToPhys"), GENERI C READ + GENERI C WRI TE, \
0, NULL, OPEN_EXI STING 0, NULL

.if eax != I NVALI D_HANDLE_VALUE
nmov hDevi ce, eax

| ea esi, adw nBuffer

assune esi:ptr DWORD

i nvoke Get Modul eHandl e, NULL

mov [esi][O0*(sizeof DWORD)], eax

i nvoke Get Modul eHandl e, $CTAO("kernel 32.dl 1", szKernel 32)
mov [esi][1*(sizeof DWORD)], eax

i nvoke Get Modul eHandl e, $CTAO("user32.dl 1", szUser32)

mov [esi][2*(sizeof DWORD)], eax

i nvoke Get Mbdul eHandl e, $CTAO("advapi 32.dl ", szAdvapi 32)

mov [esi][3*(sizeof DWORD)], eax

l ea edi, adwQutBuffer

assune edi: ptr DWORD

; Driver will receive |IRP of type | RP_MI_DEVI CE_CONTRCL

i nvoke Devicel oControl, hDevice, |OCTL_GET_PHYS ADDRESS, \
esi, sizeof adw nBuffer, \
edi, sizeof adwQutBuffer, \
addr dwByt esReturned, NULL

if (eax '=0) & & (dwBytesReturned != 0)

i nvoke Get Mbdul eFil eNane, [esi][O0*(sizeof DWORD)], \

addr acModul ePat h, sizeof acModul ePath

| ea ecx, acMdul ePat h[eax- 5]

. repeat

dec ecx

mov al, [ecx]
.until al == "\
inc ecx
push ecx

CTAO "% \t9%08Xn\t%8Xh (%)\n", szFntMd

invoke Bi gNumToString, [edi][0*(sizeof DWORD)], addr acNumnber
pop ecx
invoke wsprintf, addr acThis, addr szFntMd, ecx, \
[esi][0*(sizeof DWORD)], \
[edi][0*(sizeof DWORD)], addr acNumber

nvoke Bi gNumToString, [edi][1*(sizeof DWORD)], addr acNunber
nvoke wsprintf, addr acKernel, addr szFntMd, addr szKernel 32, \
[esi][1*(sizeof DWORD)], \
[edi][1*(sizeof DWORD)], addr acNumber

nvoke Bi gNumloString, [edi][2*(sizeof DWORD)], addr acNunmber
nvoke wsprintf, addr acUser, addr szFntMd, addr szUser32, \
[esi][2*(sizeof DWORD)], \
[edi][2*(sizeof DWORD)], addr acNumber

nvoke Bi gNunToString, [edi][3*(sizeof DWORD)], addr acNunber
nvoke wsprintf, addr acAdvapi, addr szFmtMd, addr szAdvapi 32, \
[esi][3*(sizeof DWORD)], \
[edi][3*(sizeof DWORD)], addr acNumber

nvoke wsprintf, addr acBuffer, \
$CTAO(" Modul e: \t\tVirtual :\t\tPhysical :\n\n%\n%%%"), \
addr acThis, addr acKernel, addr acUser, addr acAdvapi

assune esi: not hing
assune edi : not hi ng
i nvoke MessageBox, NULL, addr acBuffer, $CTAO("Mdul es Base Address"), \
MB_OK + MB_| CONI NFORMATI ON
. el se
i nvoke MessageBox, NULL, $CTAO("Can't send control code to device."), NULL, \
MB_OK + MB_I CONSTCP
.endif
; Driver will receive IRP of type | RP_MJ_CLCSE
i nvoke d oseHandl e, hDevice
.el se
i nvoke MessageBox, NULL, $CTAO("Device is not present."), NULL, MB_I CONSTOP
.endif
; DriverUnl oad proc in our driver will be called
i nvoke Control Service, hService, SERVICE_CONTROL_STOP, addr _ss
. el se
i nvoke MessageBox, NULL, $CTAO("Can't start driver."), NULL, MB_OK + MB_| CONSTCP
.endif
invoke Del eteService, hService
i nvoke C oseServiceHandl e, hService

.else
i nvoke MessageBox, NULL, $CTAO("Can't register driver."), NULL, MB_OK + MB_I CONSTOP
.endi f
invoke C oseServi ceHandl e, hSCMvanager
.else

i nvoke MessageBox, NULL, $CTAO("Can't connect to Service Control Mnager."), NULL, \
MB_OK + MB_I CONSTOP
.endi f
invoke ExitProcess, 0

start endp

end start

Not considering the code that prepares the input data sending to the device and the code responsible for formatting and
displaying the output from the device, there is a few new stuff here - only three calls: CreateFile, DeviceloControl and
CloseHandle. All these functions accept the device (I repeat, not the driver) handle as an argument.

4.2.2 Device object

After loading, VirtToPhys driver creates the named device "devVirtToPhys" (The "dev" prefix is not necessary, but | have

added it with purpose - I'

Il tell you why below).

The device name is placed in the Object Manager namespace. Object Manager is the system component responsible for
creating, deleting, protecting, and tracking objects. By convention, device objects are placed in the \Device directory,

inaccessible by the applications using the Win32 API.

To traverse the namespace maintained by the Object Manager use my Windows Object Explorer (WinObjEx) (http://www.
wasm.ru/) or Object Viewer by Mark Russinovich (http://www.sysinternals.com/).

To view objects created by VirtToPhys on your computer, simply run VirtToPhys.exe, but do not close a dialog window.

i mWindows Dbject Explorer

=10 %]

File “iew Help
B % | e
B Al | Mame = | Tvpe | Additional Information |:|
-2 Archlame W ChangeEventPhysicalDrivel | Event
{El NL_S ‘a'DebugMessageDevice Device
-5 Driver 8 ey irk ToPhys M
[]El ;"'Im'_GUId I DmControl Directary
5 E.W:E ‘a'DmLDader Device
FHT) Windows ;I Y i ;I
|'I,DEViEE'I,dE\-'"."irtTDP|‘|‘:.-'S A

Figure 4-2. devVirtToPhys device object in the object manager namespace

Device Properties ilﬂ

Gbject| Type | Secuity|
— Basic [nformation
Mame: |des/itT oPhys
Type: Device
Attributes:
References: 7 FPaged Pool zage:]
Handles: 7 Mon-Paged Pool Uzage: 0O

(] I Cancel Spply

4.2.3 Driver object

VirtToPhys driver object (I did not use any prefixes in the name) is placed in the \Driver directory.

Figure 4-3. devVirtToPhys device object properties

http://www.wasm.ru/
http://www.wasm.ru/
http://www.sysinternals.com/

:@Windows Object Explorer

File Wiew Extras Help

=10 %]

B e
EHEI ! || Mame - | Type | Additional Information |:|
) Archame oBvgasave Driver YWi3h Display Contraller.
D NL_S -'.._'.';-viaagp Diriver Y4 AGP Bus Filker
o Drwfar Yovialde Driver
E' Device Wirtual To Physica
T Windows i , e
: i s Wolsnap Diriver Storage volumes
H-[T) Sessions 1 . .
et Wanarp Driver Remote Access IP ARP Driver
{3 RPC Control B : _ ; —.
() BaseMamedObjects LI ,.i..-wdrrieiud Eilrwer Microsaft WINMPM WDM Audio Compatibility Driver LI
|'|,Driver'l,'-.-'irtT|:|Phys v

Figure 4-4. VirtToPhys driver object in the object manager namespace

4.2.4 Symbolic link object

Internal device names can't be used in Win32 applications (all directories, except for "\BaseNamedObjects" and "\??", are
invisible to user programs) - instead, the device name must appear in a special directory in the Object Manager's namespace,
"\??". This directory contains a symbolic links to the real, internal device names. Device drivers are responsible for creating
links in this directory so their devices will be accessible to Win32 applications.

So, our driver needs to make it possible for user-mode code to open the device object, thus it have to create a symbolic link in
the "\??" directory which points to the device object in the "\Device" directory. Thereafter, when the caller wants to have the
device handle, the 1/0 Manager can find the device object directly.

By the way, you can examine or even change these links from user-mode with the Win32 QueryDosDevice and
DefineDosDevice functions.

Having opened "\??" directory you will see, that it teems with symbolic links. Prior to Windows NT 4, this directory was named
\DosDevices; it was renamed to "\??" for performance reasons - that name places first in the alphabetical order.

For backward compatibility in the Object Manager's nhamespace root directory there is the "\DosDevices" link to the "\??"
directory.

The driver VirtToPhys creates the symbolic link "slVirtToPhys" to the device "devVirtToPhys" in the "\??" directory, which value
is the string "\Device\devVirtToPhys". Here I've used the prefix "dev".

=101 %

:mWindows Object Explorer

File “iew Help

B¢ e
-0 Windows | | Mame =
{5 RPC Contral # shadow
1) BaseMamedCbiects | & gyidsTaRT SymbolicLink | \Device' Sivvid
J @ itk ToPhys SyrnbolicLink.
h bi @ STORAGE#RemovableMe, ., Symboliclink \Device\Harddisk1\DP(130-0. ..
: ﬁ ObjectTypes LI ﬁ STHR ARF 2R erreahleie \MewiretHarddizk 1 HEd 1 w0-n

PPislirt ToPhys

| Type | Additional Information |;|
SymbolicLink | \Device\LanmanRedireckor

I Cevicedey

Swrnhnlicl ink

a L

Figure 4-5. slVirtToPhys symbolic link object in the object manager namespace

SymbaolicLink Properties ied P

Type I Security I

— Bazic Information
Mame: |shitT oPhys

Type: SumbolicLink

Attributes: Permanent
References: 1 FPaged Pool zage:]
Handles:] Mon-Paged Pool Uzage: 0O

— Symbaolic Link [nformation
Creation Time: 13:39:05, 17 Apr 2004
Link T WDevicedew it T oPhys

(] I Cancel Spply

Figure 4-6. slVirtToPhys symbolic link object properties

I've added the prefixes only to distinguish the different kinds of objects. The point is to show it's not necessary for the device
name and the symbolic link name to be (though, usually it's the case) coincided with the name of the driver. The important
thing here is that the symbolic link name should specify the valid device name. And one more important point - there can not
be two objects with the same name in a single object directory, just as there are no two files with identical name in the same
file system directory.

Thus, upon exit from the StartService function we have three new objects: the driver "\Driver\VirtToPhys", the device "\Device
\devVirtToPhys" and the symbolic link to the device " \??\slVirtToPhys".

If you still remember, in the second part of this doc, | have promised to tell what "\??", preceding the driver's file path like "\??
\C:\masm32\..." is. So, "\??\C:" is a symbolic link to the internal device named "\Device\HarddiskVolumel", or the first
volume on the first hard drive in the system.

4.2.5 File object

Let's get back to our source code. After the driver is started, we want to call it somehow. To accomplish this, we only need to
open a file handle to the driver calling CreateFile:

The description of the CreateFile takes a a lot of space in the documentation. But only the small piece of that info is concerned
about the device drivers.

CreateFile proto stdcall | pFi | eNane: LPCSTR, dwDesi r edAccess: DWORD, \
dwShar eMbde: DWORD, | pSecurityAttributes: LPVO D, \
dwCr eati onDi stribution: DAORD, dwFl agsAndAttri butes: DWORD, \
hTenpl at eFi | e: HANDLE

Despite its name, this function creates or opens existing (many Create* functions work this way) object, but not just a file.
Microsoft definitely should name it CreateObject. The device can appear as an object.

IpFileName Points to a null-terminated string that specifies the name of the device to open. The symbolic link nhame
pointing to the device object, to be exact.

dwDesiredAccess Specifies the type of access to the device.
We will need two values:
GENERIC_READ Specifies read access. Data can be read from the device;

GENERIC_WRITE Specifies write access. Data can be written to the device.
These flags can be combined together.

dwShareMode Set of bit flags that specifies how the device can be shared.
Three values can be useful to us:

0 The device cannot be shared. Subsequent open operations on the
device will fail, until the handle is closed. Though the
documentation stands this, | could not achieve it using O.

If you need to share the device, use the following values:

FILE_SHARE_READ Subsequent open operations on the device will succeed only if read
access is requested;
FILE_SHARE_WRITE Subsequent open operations on the device will succeed only if
write access is requested.
IpSecurityAttributes Pointer to a SECURITY_ATTRIBUTES.

Since any special protection is not necessary for us and we don't need returned handle to be inherited
by child processes we simply specify NULL here.

dwCreationDistribution Specifies the action to take on files that exist, and which action to take when files do not exist.

For devices, this parameter must be always OPEN_EXISTING.
dwFlagsAndAttributes Specifies the attributes and flags.

This parameter will be always equal O.
hTemplateFile Specifies a handle to a template file.

For devices, this parameter must be always NULL.

If CreateFile successfully creates or opens the specified device, a handle to a device is returned; otherwise,
INVALID_HANDLE_VALUE is returned.

Most Windows functions that return a handle return NULL when they are unsuccessful. CreateFile, however, returns
INVALID_HANDLE_ VALUE defined as -1.

We call CreateFile as follows.

i nvoke CreateFile, $CTAO("\\\\.\\s|VirtToPhys"), GENERI C READ + GENERI C WRI TE, \
0, NULL, OPEN EXISTING 0, NULL

I hope everything is clear with the last five parameters. The second parameter is a combination of flags GENERIC_READ +
GENERIC_WRITE, since we intend both to send the data to the device and to receive the results of its work.

Let's examine the first parameter. It is a pointer to the symbolic link name, in the form "\\.\sIVirtToPhys". The "\\.\" is a
Win32-defined alias for the local computer. The CreateFile is the wrap around the other function NtCreateFile (realized in \%
SystemRoot%\System32\ntdll.dll), which in turn accesses the corresponding system service (don't confuse to Win32 service
processes).

System service is an entry point into the kernel from environment subsystems. A system service dispatch is triggered
as a result of executing an int 2Eh (Windows NT/W2K) or sysenter (Windows XP/2003) instruction on x86 processors.
Executing these instruction results in a trap that causes the executing thread to transition into kernel-mode and enter
the system service dispatcher.

NtCreateFile substitutes an alias for the local computer "\\.\" with the "\??" (thus "\\.\slVirtToPhys" turns to "\??
\slVirtToPhys") and calls the kernel's ObOpenObjectByName function. Through the symbolic link ObOpenObjectByName finds
the "\Device\devVirtToPhys" object and returns the pointer to it (thus the symbolic link visible from the user-mode code is
used by the Object Manager for compilation in the internal device name). Using this pointer NtCreateFile creates the new file
object representing the device and returns its handle.

The operating system abstracts all 1/0 requests as operations on a virtual file, hiding the fact that the target of an 1/0
operation might not be a file-structured device. The driver converts the requests from requests made to a virtual file to
hardware-specific requests. This abstraction generalizes an application's interface to devices. All data that is read or
written is regarded as a simple stream of bytes directed to these virtual files.

Before CreateFile returns, the 1/0 Manager creates IRP the type of IRP_MJ_CREATE and sends it to the driver for processing.
The driver-defined routine that is responsible for processing this type of IRP will execute in the same thread context as the
initiator of the 170 requests (the caller of the CreateFile) at IRQL = PASSIVE_LEVEL. If that driver-defined routine successfully
returns, the Object Manager creates a handle for the file object in the process's handle table and the handle propagates back
through the calling chain, finally reaching the application as a return parameter from CreateFile.

The newly created file object is the executive object and does not get into the Object Manager namespace. You can use
Process Explorer utility by Mark Russinovich (http://www.sysinternals.com) to explore such objects.

http://www.sysinternals.com/

% Process Explorer - Sysinternals: www.sysinternals.com - |EI|5|
File “iew Process Handle ©Ophions Search Help
B B[E R & X
Process | Pl | CPU | Drescription | Dwrier | Pricrity | Handles | YWindow Title -
Cﬂ' winhlp32. exe 960 0 Microzoft® Help MOME-... 8 29 YWin32 Programmer's Fefere
E Wirk T oP bz, exe 5 M odules %
Cﬂ' winhlp32. exe 1136 0O Weindows Winhlp3s MOME-... & 18
J
Handle | Type o | Access | I ame | -
x40 ke Dx000F 003F HELk L
0=6C File (007 2019F WDevicede it T oPhyz
(It File (w0071 2019F WDeviceM amedPipetsvoct] -
Wirt ToPhys. exe pids 1045 Refresh Rate: Paused v

Figure 4-7. File object

Object Properties 2 x|

Dretails | Security I

— Baszic Infarmation

Mame: [\DevicehdeinT oPhys

Type: File
Dezcription; A& digk file, communications endpoint, or driver interface.
Permanent: [
— References [luota Charges
References: 2 FPaged: 0O
Handlez: 1 Mon-Paged: 0O

k. I Cancel

Figure 4-8. File object properties

Let me summarize. So, "\\.\slVirtToPhys" turns to the symbolic link "\??\slVirtToPhys" and finally used to find the appropriate
device "\Device\devVirtToPhys". From the device object DEVICE_OBJECT is fetched out which driver is responsible for
managing this device. Then I/0 Manager sends IRP_MJ_CREATE request directly to this driver. This way the driver knows that
some code tries to get the access to its device. If the driver wants to grant the access it returns success. Now the Object
Manager creates a handle for the virtual file object representing the device and returns it to the user-mode code.

Handles and symbolic links serve as indirect pointers to system resources; this indirection keeps application programs
from fiddling directly with system data structures.

4.2.6 Communicating with the device

.if eax !'= I NVALI D_HANDLE_ VALUE
mov hDevi ce, eax

If CreateFile returned valid device handle we save it in hDevice variable. Now we are able to communicate with the device
calling ReadFile, WriteFile, and DeviceloControl. The DeviceloControl is the universal function to communicate with the
devices. Here is its prototype:

Devi cel oControl proto stdcall hDevi ce: HANDLE, dwl oCont r ol Code: DWORD, \

| pl nBuf fer: LPVA D, nl nBuf f er Si ze: DWORD, \
| pQut Buf f er: LPVO D, nQut Buf f er Si ze: DWORD, \
| pByt esRet urned: LPVA D, | pOverl apped: LPVO D

The DeviceloControl accepts even more parameters than CreateFile, but it's simple enough.

hDevice

Handle to the device;

dwloControlCode -Control code that indicates what control operation to perform;

IpInBuffer

ninBufferSize

IpOutBuffer

nOutBufferSize

We'll discuss how to define these codes a bit further on.

Pointer to a buffer that contains the data required to perform the operation. This parameter can be NULL if the
dwloControlCode parameter specifies an operation that does not require input data;

Specifies the size, in bytes, of the buffer pointed to by IpInBuffer;

Pointer to a buffer that receives the operation's output data. This parameter can be NULL if the
dwloControlCode parameter specifies an operation that does not produce output data;

Specifies the size, in bytes, of the buffer pointed to by IpOutBuffer;

IpBytesReturned Pointer to a variable that receives the size, in bytes, of the data stored into the buffer pointed to by

IpOverlapped

IpOutBuffer;
Pointer to an OVERLAPPED structure.
This structure is required to help control an asynchronous operation. As we only want to call our driver

synchronously (the DeviceloControl will not return until the appropriate driver's routine will complete), we
pass NULL.

4.2.7 1/0 Control Codes

The device driver can be considered as a package of kernel-mode functions. 1/0 Control Code defines which function will be
called. The dwloControlCode argument to DeviceloControl is used for this purpose. It indicates the control operation we want
to perform and how it should be performed.

The control code is a 32-bit numeric constant that can be defined using the CTL_CODE macro that's part of both the winioctl.
inc and the ntddk.inc include files.

DeviceType

Access

Function

Method

H 16 14 2 1]

DeviceType Access Function Method

Figure 4-9. 1/0 Control Code Layout

The device type (16 bits) indicates the type of the device that implements this control operation.

Values in the range O - 7FFFh are reserved by Microsoft. Values in the range 8000h - OFFFFh are available for
developers of new kinds of kernel-mode drivers.

In \include\w2k\ntddk.inc you can find a set of FILE_DEVICE_XXX symbolic constants which values are from the
range reserved by Microsoft. We will use FILE_DEVICE_UNKNOWN. However you can define another
FILE_DEVICE_XXX.

The access code (2 bits) indicates the access rights an application needs to its device handle to issue this control
operation.

As this field is only two bits long, we have four possibilities here:

FILE_ANY_ACCESS (0) Maximum access rights. The driver will carry out the requested operation for any
caller that has a handle for its device.

FILE_READ_ACCESS (1) Read access rights. With this required access, the device driver transfers data
from the device to memory buffer.

FILE_WRITE_ACCESS (2) Write access rights. With this required access, the device driver transfers data
from memory buffer to its device.

FILE_READ_ACCESS or Both read and write access rights. With this required access, the device driver

FILE_WRITE_ACCESS (3) transfers data between memory buffer and the device.

The function code (12 bits) indicates precisely which control operation this code describes.

It can take any value in the range 800h - OFFFh for private 1/0 control codes. Values in the range O - 7FFh are
reserved by Microsoft for public 1/0 control codes.

The buffering method (2 bits) indicates how the 1/0 Manager will handle the input and output buffers supplied by
the application.

This field is two bits long, so four values can be used as one of the following system-defined constants:
METHOD_BUFFERED (0) buffered 1/0;

METHOD_IN_DIRECT (1)
METHOD_OUT_DIRECT (2)
METHOD_NEITHER (3) neither 1/0.

direct 1/0;

We'll talk about buffer management in more details later. Now the important thing is the buffered method is most safe, since
the system takes care about buffers handling, resulting in an overhead of the memory copy operation. But drivers commonly
use buffered 1/0 when callers transfer requests smaller than one page (4 KB), because the copy operation of small buffers
matches the overhead of the memory lock performed by direct 1/0. And we use buffered method in VirtToPhys driver.

You can form 1/0 control code manually, but it's much more convenient to use a macro CTL_CODE, that offers a mechanism to
generate IOCTL values. Here it is:

CTL_CODE Devi ceType: =<0>, Function: =<0>, Met hod: =<0>, Access: =<0>
EXI TM % ((Devi ceType) SHL 16) OR ((Access) SHL 14) OR ((Function) SHL 2) OR (Method))

As | already have said the CTL_CODE macro is defined both in the winioctl.inc, which included in the source code of the
service control program, and in the ntddk.inc, included in the driver's source code.

Since we use NUM_DATA_ENTRY, DATA_SIZE constants and IOCTL_GET_PHYS_ADDRESS 1/0 control code both in the service
control program and in the driver, they placed in separate include file common.inc. Thus all changes in this file will be mirrored
in the both source codes.

NUM DATA_ENTRY equ 4

DATA_SI ZE equ (sizeof DWORD) * NUM DATA ENTRY

| OCTL_GET_PHYS_ADDRESS equ CTL_CODE(FI LE_DEVI CE_UNKNOAN, 800h, NMETHOD BUFFERED, FILE_READ ACCESS +
FI LE_V\RI TE_ACCESS)

4.2.8 Data exchange

Now let's return to the driver's source code.

| ea esi, adwi nBuffer

assune esi:ptr DWORD

i nvoke Get Modul eHandl e, NULL

mov [esi][0*(sizeof DWORD)], eax

i nvoke Get Mbdul eHandl e, $CTAO("kernel 32.dlI ", szKernel 32)
mov [esi][1*(sizeof DWORD)], eax

i nvoke Get Mbdul eHandl e, $CTAO("user32.dl 1", szUser32)

mov [esi][2*(sizeof DWORD)], eax

i nvoke Get Modul eHandl e, $CTAO("advapi 32.dl 1", szAdvapi 32)

mov [esi][3*(sizeof DWORD)], eax

Here we fill adwInBuffer buffer with the virtual addresses to be converted.

| ea edi, adwQutBuffer

assune edi:ptr DWORD

i nvoke Devicel oControl, hDevice, |OCTL_GET_PHYS ADDRESS, \
esi, sizeof adw nBuffer, \
edi, sizeof adwQutBuffer, \
addr dwByt esReturned, NULL

And by calling DeviceloControl we pass the buffer to the driver, that has to convert each virtual address to physical one.

if (eax '=0) & & (dwBytesReturned !'=0)

i nvoke Get Modul eFi | eNanme, [esi][O0*(sizeof DWORD)], \
addr acModul ePat h, sizeof acModul ePath

| ea ecx, acMdul ePat h[eax- 5]

. repeat

dec ecx

mov al, [ecx]
.until al == "\
inc ecx

push ecx

CTAO "% \t908Xh\t%8Xh (%)\n", szFntMd

i nvoke BigNunToString, [edi][O0*(sizeof DWORD)], addr acNumber
pop ecx
invoke wsprintf, addr acThis, addr szFntMd, ecx, \
[esi][0*(sizeof DWORD)], \
[edi][0*(sizeof DWORD)], addr acNumber

nvoke Bi gNunToString, [edi][1*(sizeof DWORD)], addr acNumber
nvoke wsprintf, addr acKernel, addr szFntMd, addr szKernel 32, \
[esi][1*(sizeof DWORD)], \
[edi][1*(sizeof DWORD)], addr acNumber

nvoke Bi gNunToString, [edi][2*(sizeof DWORD)], addr acNunmber
nvoke wsprintf, addr acUser, addr szFntMd, addr szUser32, \
[esi][2*(si zeof DWORD)], \
[edi][2*(sizeof DWORD)], addr acNumber

nvoke Bi gNunmToString, [edi][3*(sizeof DWORD)], addr acNumber
nvoke wsprintf, addr acAdvapi, addr szFmtMd, addr szAdvapi 32, \
[esi][3*(sizeof DWORD)], \
[edi][3*(sizeof DWORD)], addr acNumber

nvoke wsprintf, addr acBuffer, \
$CTAO(" Modul e:\t\tVirtual :\t\tPhysical :\n\n%\n%%%"), \
addr acThis, addr acKernel, addr acUser, addr acAdvapi

assune esi: nothing
assune edi : not hi ng
i nvoke MessageBox, NULL, addr acBuffer, $CTAO("Mdul es Base Address"), \
MB_OK + NMB_| CONI NFORMATI ON
.el se
i nvoke MessageBox, NULL, $CTAO("Can't send control code to device."), NULL, \
MB_OK + MB_| CONSTOP
.endi f

If DeviceloControl successfully returns, dwBytesReturned is equal to number of bytes we have in adwOutBuffer buffer filled by
the driver. Now our task is simple. We have to format derived info and show it to our user. I'm sure you smart enough to
understand it by yourself what is going on here. The escape sequences used in $CTAO are the common one (see \Macros
\Strings.mac for details).

Modules Base Address x|

i] Maodule: Wirkual: Pheysical:
WirtToPhys,. exe 004000000 QEC&F000N (247 835 524)

kernel3z,dl F7E40000h 043F30000 | 71 249920)
user3z2. di 77000000k 043F90000 | 71 274 496)
advapizz. di F7DANOO0R 043E7000R | 71 200 765)

Figure 4-10. The output of VirtToPhys.exe

4.2.9 Cleanup

i nvoke Cl oseHandl e, hDevice

Now we only have to close opened device handle. At this point 1/0 Manager sends two IRPs to device driver. Firstly it is
IRP_MJ_CLEANUP, telling the driver that its device handle is about to close. And then IRP_MJ_CLOSE, telling the driver that its
device handle have been closed. By the way, you can prevent closing your device handle by returning error code from the
routine responsible for handling IRP_MJ_CLEANUP request. The driver-defined routines responsible for processing these types
of IRP will execute in the same thread context as the initiator of the 1/0 requests (the caller of the CloseHandle) at IRQL =
PASSIVE_LEVEL.

We'll talk in the next part about how the driver handles IRP.

To make the drivers work under previous builds of Windows NT you need to change "\??" to "\DosDevices" and recompile the
driver, since, as | have already mentioned, prior to Windows NT 4 "\??" directory was named "\DosDevices".

Copyright © 2002-2004 Four-F, four-f@mail.ru

mailto:four-f@mail.ru

	freewebs.com
	The I/O Subsystem

